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1 Introduction

It is well known that if u is a BV function from a bounded open set � ⊂ IRN and
B : IR → IR is Lipschitz, the composition v = B◦u is also in BV(�) and the following
chain rule formula holds

Dv = B′(̃u)∇uLN + B′(̃u)Dcu + (B(u+)− B(u−))νuHN−1 Ju,

where ∇u is the absolutely continuous part of Du, Dcu is the Cantor part of Du and
Ju is the jump set of u (for the definition of these and other relevant quantities, see
Sect. 2). A delicate issue about this formula concerns the meaning of the first two
terms on the right hand side. In fact, in order to understand why they are well defined,
one has to take into account that B′(t) exists for L1-a.e. t and that, if E is an L1-null
set in IR, not only ∇u vanishes LN-a.e. on ũ−1(E), but also |Dcu|(̃u−1(E)) = 0 (see
[2, Theorem 3.92]). The difficulty of giving a correct meaning to the various parts in
which the derivative of a BV function can be split is even greater when u is a vector
field, a case where a chain rule formula has been proved by Ambrosio and Dal Maso
in [1]. In particular, their result applies to the composition of a scalar BV function
with a Lipschitz function B depending also on x, namely to the function B(x, u(x)),
where B : �× IR → IR is Lipschitz.
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In many applications, however, B has the special form

B(x, t) =
t

∫

0

b(x, s)ds, (1.1)

but, on the other hand, one would like to assume only a weak differentiability of B
with respect to x (or even less). In this spirit, De Cicco and Leoni ([6]) have obtained
a chain rule formula in the case B(x, t) is a vector field such that divxB(·, t) belongs to
L1(�), uniformly with respect to t, and u is in W1,1(�). In the same paper they prove
an L1-lower semicontinuity result in W1,1 by applying their formula to a vector field
B of the type (1.1).

In this paper we extend these results to the case where u is a BV function and
replace the assumption that divxB is in L1 with a BV dependence with respect to x.
Namely, we prove the following

Theorem 1.1 Let� ⊂ IRN be an open bounded set and let b : �× IR → IR be a locally
bounded Borel function. Assume that

(i) for L1-a.e. t ∈ IR the function b(·, t) ∈ BV(�);
(ii) for any compact set H ⊂ IR,

∫

H

|Dxb(·, t)|(�) dt < +∞.

Then, for every u ∈ BV(�) ∩ L∞
loc(�), the function v : � → IR, defined by

v(x) :=
u(x)
∫

0

b(x, t)dt,

belongs to BVloc(�) and for any φ ∈ C1
0(�) we have

∫

�

∇φ(x)v(x)dx = −
+∞
∫

−∞
dt

∫

�

sgn(t) χ∗
�u,t
(x)φ(x)dDxb(x, t)

−
∫

�

φ(x)b∗(x, ũ(x))∇u(x)dx

−
∫

�

φ(x)b∗(x, ũ(x))dDcu(x)

−
∫

Ju

φ(x)νu(x)dHN−1(x)

u+(x)
∫

u−(x)

b∗(x, t)dt, (1.2)

where �u,t = {x ∈ � : t belongs to the segment of endpoints 0 and u(x)} and χ∗
�u,t

and
b∗(·, t) are, respectively, the precise representatives of χ�u,t and b(·, t).

Notice that all the integrals on the right hand side of (1.2) are well defined. In fact
b∗(x, t) is a locally bounded Borel function, ũ is Borel, hence b∗(x, ũ(x)) is a Borel
function too. Similarly, the function (x, t) ∈ � × IR → χ∗

�u,t
(x) is a Borel function,



A chain rule formula in BV and application to lower semicontinuity 429

hence it makes sense to integrate it first with respect to the vector measure Dxb(·, t)
and then with respect to t.

To prove (1.2) we start by regularizing b with respect to x, so to get a Lipschitz
approximation to which the Ambrosio and Dal Maso chain rule formula applies. Then,
the rest of the proof consists in analyzing carefully the convergence of all the terms in
(1.2), those involving the various parts of the derivative of u and the one containing
the derivative of b with respect to x. Each of these terms requires a different argu-
ment. We notice also that, when dealing with a function u in W1,1, the assumptions of
Theorem 1.1 can be weakened by considering a vector field b : � × IR → IRN such
that divxb(·, t) is a Radon measure for L1-a.e. t. At this regard our Theorem 3.4 can
be viewed as a generalization of the afore mentioned result proved in [6].

Let us now turn to the application of (1.2) to lower semicontinuity. Recent papers
by Fonseca and Leoni, Gori, Maggi and Marcellini, and by the authors of this paper
(see [6,7,11,12,14,15]) have shown that the classical conditions due to Serrin [16],
ensuring the L1-lower semicontinuity in W1,1 of a functional of the type

F(u) =
∫

�

f (x, u(x), ∇u(x)) dx, u ∈ W1,1(�), (1.3)

can be considerably weakened. In particular, Gori et al. in [15] show that beside
the usual convexity assumption with respect to the gradient and the continuity with
respect to u, in order to prove that F is lower semicontinuous it is enough to assume
that f is (uniformly) weakly differentiable in x, namely that for any compact set
H ⊂ IR × IRN

∫

�

|∇xf (x, t, ξ)| dx ≤ L for every (t, ξ) ∈ H,

for some constant L ≡ L(H). As a consequence of Theorem 1.1, we are able to
improve their result by replacing the weak differentiabilty of f with respect to x with
a BV dependence on x.

Theorem 1.2 Let us assume that f : � × IR × IRN → [0, +∞) is a locally bounded
Borel function such that

f (x, t, ·) is convex in IRN for every (x, t) ∈ �× IR, (1.4)

f (x, ·, ξ) is continuous in IR for every (x, ξ) ∈ �× IRN , (1.5)

f (·, t, ξ) ∈ BV(�) for every (t, ξ) ∈ IR × IRN , (1.6)

and such that, for any compact K ⊂ IR × IRN, there exists L ≡ L(K) such that
∫

K

|Dxf (·, t, ξ)|(�)dtdξ < L. (1.7)

Then the functional F is lower semicontinuous in W1,1(�) with respect to the L1(�)

convergence.

We remark that this result is optimal in the sense that, as shown by various examples
(see [4] or [15]), if no coercivity nor strict convexity of f is assumed the lower semi-
continuity may fail when f is not BV in x. It would be nice to extend this theorem
to the case where u is in BV, i.e. to find the lower semicontinuous envelope F of
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the functional F in (1.3). Indeed, in the same spirit of Theorem 1.2 we are able to
prove that if u ∈ BV(�) the absolutely continuous part of F(u) is still represented by
∫

�
f (x.u.∇u)dx, where ∇u stands for the absolutely continuous part of the distribu-

tional derivative Du (see Theorem 3.5). However, the representation of the singular
part of F(u) is still an open problem under the quite general assumptions on f made
above.

As an example, consider the functional
∫

�

a(x)|∇u(x)| dx,

where a is a locally bounded nonnegative BV function. By Theorem 1.2, this func-
tional is L1-lower semicontinuos on W1,1, but even in this case it is not clear which is
its lower semicontinuous extension to BV. One could think that a good candidate is
the functional

∫

�

a∗(x)d|Du|(x) u ∈ BV(�), (1.8)

but it is not so. In fact if � = (0, 1)2, a = χE, where E = (0, 1) × (1/2, 1), the
integral in (1.8) is not lower semicontinuous along the sequence un = χEn , where
En = (0, 1)× ((n − 1)/(2n), 1), which converges in L1(�) to χE.

2 Definitions and preliminaries

In this section we recall some preliminary results and basic definitions. For all the
material contained in this section the reader may refer to [2,10].

Let E be a measurable subset of IRN . The density D(E; x) of E at a point x ∈ IRN

is defined by

D(E; x) = lim
�→0

LN(E ∩ Bρ(x))
ωNρN ,

where ωN is the measure of the unit ball, whenever this limit exists. Hereafter, Bρ(x)
denotes the ball centered at x with radius ρ. The essential boundary ∂ME of E is the
Borel set defined as

∂ME = IRN \ {x ∈ IRN : D(E; x) = 0 or D(E; x) = 1} . (2.1)

We say that the set E is of finite perimeter in an open set � if HN−1(∂ME ∩ �) < ∞.
Notice that, by [10, Theorem 4.5.11], this definition is equivalent to the one originally
given in [8] and usually adopted in the literature. Notice also that if � ⊂ IRN is an
open set, the quantity HN−1(∂ME ∩ �) agrees with the classical perimeter of E in �
(see [2, Theorem 3.61]).

Let � ⊂ IRN be an open set and let u : � → IR be a measurable function. The
upper and lower approximate limits of u at a point x ∈ � are defined as

u+(x)= inf{t ∈ IR : D({u> t}; x)=0}, u−(x) = sup{t ∈ IR : D({u< t}; x)=0}, (2.2)

respectively. The quantities u+(x), u−(x) are well defined (possibly equal to ±∞) at
every x ∈ �, and u−(x) ≤ u+(x). The functions u+, u− : � → [−∞, ∞] are Borel
measurable.
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We say that u is approximately continuous at a point x ∈ � if u+(x) = u−(x) ∈ IR.
In this case, we set ũ(x) = u+(x) = u−(x) and call ũ(x) the approximate limit of u
at x. Notice that definition (2.2) implies that u is approximately continuous at x with
approximate limit ũ(x) if and only if

D({y ∈ � : |u(y)− ũ(x)| > ε}; x) = 0 for every ε > 0 . (2.3)

The set of all points in�where u is approximately continuous is a Borel set which will
be denoted by Cu and called the set of approximate continuity of u. The set Su = �\Cu
will be referred to as the set of approximate discontinuity of u.

As a simple consequence of the above definitions we have,

∂M{u > t} ⊂ {u− ≤ t ≤ u+} for every t ∈ IR. (2.4)

In particular,
Cu ∩ ∂M{u > t} ⊂ {̃u = t} for every t ∈ IR. (2.5)

Finally, by u∗ we denote the precise representative of u which is defined by

u∗(x) = u+(x)+ u−(x)
2

if u+(x), u−(x) ∈ IR, u∗(x) = 0 otherwise.
A locally integrable function u is said to be approximately differentiable at a point

x ∈ Cu if there exists ∇u(x) ∈ IRN such that

lim
ρ→0

1
ρN+1

∫

Bρ(x)

|u(y)− ũ(x)− 〈∇u(x), y − x〉| dy = 0. (2.6)

Here, 〈·, ·〉 stands for scalar product in IRN . The vector ∇u(x) is called the approximate
differential of u at x. The set of all points in Cu where u is approximately differentiable
is denoted by Du and is called the set of approximate differentiability of u. It can be
easily verified that Du is a Borel set and that ∇u : Du → IRN is a Borel function.

A function u ∈ L1(�) is said to be of bounded variation if its distributional gradient
Du is an IRN-valued Radon measure in � and the total variation |Du| of Du is finite
in�. The space of all functions of bounded variation in� is denoted by BV(�), while
the notation BVloc(�) will be reserved for the space of those functions u ∈ L1

loc(�)

such that u ∈ BV(�′) for every open set �′ ⊂⊂ �.
Let u ∈ BV(�). Then it can be proved that

lim
ρ→0

−
∫

Bρ(x)

|u(y)− ũ(x)| dy = 0 for HN−1−a.e. x ∈ Cu

and that u is approximately differentiable for LN-a.e. x. Moreover, the functions u−
and u+ are finite HN−1-a.e. and for HN−1-a.e. x ∈ Su there exists a unit vector νu(x)
such that

lim
ρ→0

−
∫

B+
ρ (x;νu(x))

|u(y)− u+(x)| dy = 0, lim
ρ→0

−
∫

B−
ρ (x;νu(x))

|u(y)− u−(x)| dy = 0, (2.7)

where B+
ρ (x; νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}, and B−

� (x; νu(x)) is defined
analogously. The set of all points in Su where the equalities in (2.7) are satisfied is
called the jump set of u and is denoted by Ju.
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If u is a BV function, we denote by Dau the absolutely continuous part of Du with
respect to Lebesgue measure. The singular part, denoted by Dsu, is split into two more
parts, the jump part Dju and the Cantor part Dcu, defined by

Dju = Dsu Ju, Dcu = Dsu − Dju.

Finally, we denote by ˜Du the diffuse part of Du, defined by

˜Du = Dau + Dcu.

If u ∈ BV(�), then for a.e. t ∈ IR the set {x ∈ � : u(x) > t} is of finite perimeter in
�. Moreover, the following version of the coarea formula holds (see [2, Theorem 3.40
and (3.63)]).

Theorem 2.1 (Coarea formula) Let � be an open subset of IRN and let u ∈ BV(�).
Assume that g : � → [0, +∞] is a Borel function. Then

∫

�

g d|Du| =
+∞
∫

−∞
dt

∫

∂M{u>t}∩�
g dHN−1. (2.8)

An alternative version of formula (2.8) states that

∫

�

g d|Du| =
+∞
∫

−∞
dt

∫

{u−≤t≤u+}
g dHN−1 (2.9)

(see [10, Theorem 4.5.9]). Making use of (2.8) and (2.9) with g ≡ 1 and of (2.4) yields

HN−1
(

{u− ≤ t ≤ u+} \ (

∂M{u > t} ∩�)

)

= 0 for L1-a.e. t ∈ IR. (2.10)

The following lemma contains some useful properties of the characteristic functions
of the level sets of a BV function u.

Lemma 2.2 Let� be an open subset of IRN and let u : � → IR a measurable function.
Then, for all t ∈ IR and x ∈ �

u−(x) > t �⇒ χ∗{u>t}(x) = 1, u+(x) < t �⇒ χ∗{u>t}(x) = 0, (2.11)

Moreover, if u ∈ BV(�), for L1-a.e. t ∈ IR there exists a Borel set Nt ⊂ �, with
HN−1(Nt) = 0, such that for any x ∈ � \ Nt the following relations hold

u−(x) > t ⇐⇒ χ∗{u>t}(x) = 1, u+(x) < t ⇐⇒ χ∗{u>t}(x) = 0, (2.12)

u−(x) ≤ t ≤ u+(x) ⇐⇒ χ∗{u>t}(x) = 1
2

. (2.13)

Proof Let us fix x ∈ � and assume that u−(x) > t. Then, by the definition (2.2),
it follows that D

({u < s}; x
) = 0 for all t < s < u−(x). In particular, we have

that D
({u > t}; x

) = 1, i.e. D
({χ{u>t} = 1}; x

) = 1 which, in turn, is equivalent
to χ−

{u>t}(x) = 1. From this equality we immediately get that χ∗{u>t}(x) = 1, since
χ−

{u>t}(x) ≤ χ+
{u>t}(x) ≤ 1 for all x ∈ �. The other implication in (2.11) is proved in the

same way.
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To prove (2.12) and (2.13), notice that there exists an L1-null set T ⊂ IR such that
if t �∈ T the level set {u > t} is of finite perimeter in � and (2.10) holds. Let us fix
t ∈ IR \ T. Since {u > t} is a set of finite perimeter, denoting by {u > t}1/2 the set
of points x ∈ IRN such that D

({u > t}; x
) = 1/2, we have (see [2, Theorem 3.61])

HN−1(∂M{u > t} ∩� \ {u > t}1/2) = 0. Therefore, from this equation and from (2.10),
setting

Nt = {u− ≤ t ≤ u+} \ {u > t}1/2

we have that HN−1(Nt) = 0.
Let x be a point in � \ Nt, such that χ∗{u>t}(x) = 1. From this equality we have

that χ−
{u>t}(x) = 1, which is equivalent to the equality D

({u > t}; x
) = 1, hence

D
({u < t}; x

) = 0 and, by (2.2), this last equality yields u−(x) ≥ t. However, if u−(x)
were equal to t, then x would trivially satisfy the inequality u−(x) ≤ t ≤ u+(x) and
this is impossible since D

({u > t}; x
) = 1, hence x �∈ {u > t}1/2, and by assumption

x �∈ Nt. Therefore u−(x) > t and by (2.11) we obtain the first equivalence in (2.12).
The second equivalence is proved similarly.

If u−(x) ≤ t ≤ u+(x) and x �∈ Nt, then necessarily x ∈ {u > t}1/2, hence we easily
get that χ∗{u>t}(x) = 1/2. The opposite implication follows trivially from (2.12). ��
Next result is contained in [2, Lemma 2.35].

Lemma 2.3 Let μ be a positive Radon measure in an open set � ⊂ IRN and let
ψj : � → [0, ∞], j ∈ IN, be Borel functions. Then

∫

�

sup
j
ψj dμ = sup

⎧

⎪

⎨

⎪

⎩

∑

j∈J

∫

Aj

ψj dμ

⎫

⎪

⎬

⎪

⎭

,

where the supremum ranges among all finite sets J ⊂ IN and all families {Aj}j∈IN of
pairwise disjoint open sets with compact closure in �.

The following lemma is a classical approximation result due to De Giorgi (see [9]).

Lemma 2.4 Let f be a locally bounded Borel function from�× IR× IRN into [0, +∞),
satisfying (1.4). Then, there exists a sequence {αk} ⊂ C∞

0 (IR
N), with αk ≥ 0 and

∫

IRN αk(ξ)dξ = 1 such that, if we set for (x, t) ∈ �× IR, i = 0, 1, . . . , N,

a0,k(x, t) =
∫

IRN

f (x, t, ξ) ((N + 1)αk(ξ)+ 〈∇αk(ξ), ξ 〉)dξ ,

ai,k(x, t) = −
∫

IRN

f (x, t, ξ)
∂

∂ξi
αk(ξ)dξ ,

and, for (x, t, ξ) ∈ �× IR × IRN,

gk(x, t, ξ) = a0,k(x, t)+
N
∑

i=1

ai,k(x, t)ξi,

then, for all (x, t, ξ) ∈ �× IR × IRN, we have

f (x, t, ξ) = sup
k

max{gk(x, t, ξ), 0}.
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Remark 2.5 We remark that if for all (x, ξ) ∈ � × IRN the function f (x, ·, ξ) is
continuous, then for every x ∈ � the coefficients ai,k(x, ·) are continuous functions. If
f (·, t, ξ) is a BV function for every (t, ξ) ∈ IR × IRN and (1.7) holds, then for every
k ∈ IN, i = 0, . . . , N, and t ∈ IR the coefficients ai,k(·, t) given by the previous lemma
are BV functions. Moreover, it can be easily checked that for every compact H ⊂ IR,
there exists Lk ≡ Lk(H) such that

∫

H

|Dxak(·, t)|(�)dt ≤ Lk, (2.14)

where ak = (a1,k, . . . , aN,k).

3 Proofs

We start this section with a simple technical lemma.

Lemma 3.1 Let b(x, t) : � × IR → IR be a locally bounded Borel function. Then, the
function b∗(x, t) is also a locally bounded Borel function in �× IR.

Proof Let us prove that the function defined by

b+(x, t) := inf{s ∈ IR : D({y : b(y, t) > s}; x) = 0} for all (x, t) ∈ �× IR

is a Borel function. Then the result will follow at once, since b∗(x, t) = (b+(x, t)
+ b−(x, t))/2, where b−, defined similarly to b+, is also a Borel function.

First, notice that for all a ∈ IR

{(x, t) : b+(x, t) < a} =
⋃

si<a,si∈Q

{(x, t) : D({y : b(y, t) > si}; x) = 0}.

Thus, it is enough to show that for every s ∈ IR the set {(x, t) : D({y : b(y, t) > s}; x) =
0} is a Borel set or, equivalently, that the set

{

(x, t) : lim sup
ρ→0

1
ρN LN({y : b(y, t) > s} ∩ Bρ(x)) = 0

}

is a Borel set. To this aim, it is enough to prove that the function

(x, t) ∈ �× IR → inf
i∈IN

sup
ρ∈Q,0<ρ< 1

i

1
ρN LN({y : b(y, t) > s} ∩ Bρ(x))

is a Borel function, and this follows at once from the fact that for any Borel set
A ⊂ IRN × IR the function

(x, t) ∈ IRN × IR → LN(At ∩ Bρ(x)) ,

where At = {y : (y, t) ∈ A}, is a Borel function. In order to prove this last property, let
us consider the family of subsets of IRN × IR defined by

F = {A is a Borel subset of IRN × IR : (x, t) → LN(At ∩ Bρ(x)) is a Borel function} .

The following properties of F are easily cheched: (i) if Ai is an increasing sequence
of sets in F , then ∪iAi belongs to F ; (ii) if A1, A2 and A1 ∪ A2 belong to F , then
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A1 ∩ A2 ∈ F ; (iii) if A ∈ F , then IRN \ A ∈ F . From all these properties and from
the fact that F contains any product of a Borel subset of IRN and of a Borel subset
of IR, using [2, Remark 1.9], we get that F coincides with the family of Borel sets in
IRN × IR. Hence, the result follows. ��

Remark 3.2 We claim that, if u is a measurable, locally bounded function from �

to IR, then the function (x, t) : � × IR → χ∗
�u,t
(x) is Borel. In fact notice that since

u∗ is a Borel function, the function (x, t) : � × IR → χ�u∗ ,t (x) is Borel too. Hence,
Lemma 3.1 yields that (x, t) → χ∗

�u∗ ,t
(x) is Borel. Therefore, since χ�u∗ ,t (x) = χ�u,t (x)

for LN-a.e. x and for all t, the claim follows from the fact that, for all x ∈ � and all
t ∈ IR, χ∗

�u,t
(x) = χ∗

�u∗ ,t
(x).

Proof of Theorem 1.1 Step 1 Let us fix a test function φ ∈ C1
0(�) and let �′ ⊂⊂

� be an open set such that suppφ ⊂ �′. Denote by �ε(x) = ε−N�(x/ε), where
ε <dist(�′, ∂�), a standard radially symmetric mollifier and define

bε(x, t) : =
∫

�

�ε(x − y)b(y, t)dy

for all x ∈ �′ and t ∈ IR.
Given a function u ∈ BV(�) ∩ L∞

loc(�) we define

vε(x) : =
u(x)
∫

0

bε(x, t)dt

and since the function (x, t) → ∫ t
0bε(x, s)ds is locally Lipschitz in �× IR, using a

general chain rule formula due to Ambrosio and Dal Maso (see [1] and [2, Theo-
rem 3.101]), we have that vε ∈ BV(�′) and

∫

�

∇φ(x)vε(x)dx = −
∫

�

φ(x)dx

u(x)
∫

0

∇xbε(x, t)dt

−
∫

�

φ(x)bε(x, ũ(x))∇u(x)dx

−
∫

�

φ(x)bε(x, ũ(x))dDcu

−
∫

Ju

φ(x)

⎡

⎢

⎣

u+(x)
∫

u−(x)

bε(x, t)dt

⎤

⎥

⎦
νu(x)dHN−1(x). (3.1)

Let us now prove that

lim
ε→0+

∫

�

∇φ(x)dx

u(x)
∫

0

bε(x, t)dt =
∫

�

∇φ(x)dx

u(x)
∫

0

b(x, t)dt. (3.2)
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To this aim, it is enough to observe that

∣

∣

∣

∣

∫

�

∇φdx

u(x)
∫

0

bε(x, t)dt −
∫

�

∇φdx

u(x)
∫

0

b(x, t)dt

∣

∣

∣

∣

≤ ‖∇φ‖∞
M
∫

−M

dt
∫

�′
χ�u,t (x)|bε(x, t)− b(x, t)|dx,

where �u,t = {x ∈ � : t belongs to the segment of endpoints 0 and u(x)} and M is
a positive number such that ‖u‖∞ < M. Then, recalling that for L1-a.e. t ∈ IR the
functions bε(·, t) converge in L1(�′) to b(·, t), (3.2) follows from Lebesgue’s dominated
convergence theorem.

Step 2 We shall prove separately the convergence of the diffuse and jump parts, i.e.

lim
ε→0+

∫

�

φ(x)bε(x, ũ(x))d˜Du(x) =
∫

�

φ(x)b∗(x, ũ(x))d˜Du(x) (3.3)

and

lim
ε→0+

∫

Ju

φ(x)

⎡

⎢

⎣

u+(x)
∫

u−(x)

bε(x, t)dt

⎤

⎥

⎦
νu(x)dHN−1 =

∫

Ju

φ(x)

⎡

⎢

⎣

u+(x)
∫

u−(x)

b∗(x, t)dt

⎤

⎥

⎦
νu(x)dHN−1.

(3.4)
Using the coarea formula (2.9), we get

∫

�

φ(x)bε(x, ũ(x))d˜Du =
∫

Cu

φ(x)bε(x, ũ(x))
˜Du
|Du| (x)d|Du|

=
+∞
∫

−∞
dt

∫

{u−≤t≤u+}
φ(x)bε(x, ũ(x))χCu(x)

˜Du
|Du| (x)dHN−1

=
+∞
∫

−∞
dt

∫

{̃u=t}∩Cu

φ(x)bε(x, t)
˜Du
|Du| (x)dHN−1. (3.5)

Now, recall that for L1-a.e. t ∈ IR the function b(·, t) ∈ BV(�), hence (see Propositions
3.64(b) and 3.69(b) in [2])

bε(x, t) → b∗(x, t) for HN−1-a.e. x ∈ � (3.6)

as ε → 0. Therefore, for L1-a.e. t ∈ IR, we have

lim
ε→0

∫

{̃u=t}∩Cu

φ(x)bε(x, t)
˜Du
|Du| (x)dHN−1 =

∫

{̃u=t}∩Cu

φ(x)b∗(x, t)
˜Du
|Du| (x)dHN−1.
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From this equation, using the local boundedness of b∗ and the fact that, by the coarea
formula (2.9),

+∞
∫

−∞
HN−1 ({̃u = t} ∩ Cu)dt = |Du|(Cu) < ∞,

we can pass to the limit in (3.5) and by the Lebesgue’s dominated convergence theo-
rem we get

lim
ε→0

∫

�

φ(x)bε(x, ũ(x))d˜Du =
+∞
∫

−∞
dt

∫

{̃u=t}∩Cu

φ(x)b∗(x, t)
˜Du
|Du| (x)dHN−1.

From this equation, using the coarea formula (2.9) again, we immediately get (3.3).
Finally, using Fubini’s theorem, we estimate

∣

∣

∣

∣

∣

∣

∣

∫

Ju

φ(x)νu(x)dHN−1

u+(x)
∫

u−(x)

bε(x, t)dt −
∫

Ju

φ(x)νu(x)dHN−1

u+(x)
∫

u−(x)

b∗(x, t) dt

∣

∣

∣

∣

∣

∣

∣

≤ ‖φ‖∞
∫

Ju∩�′
dHN−1

u+(x)
∫

u−(x)

|bε(x, t)−b∗(x, t)| dt

≤ ‖φ‖∞
∫

Ju∩{x∈�′:u+(x)−u−(x)<1/h}
dHN−1

u+(x)
∫

u−(x)

|bε(x, t)−b∗(x, t)| dt

+‖φ‖∞
∫

Ju∩{x∈�′:u+(x)−u−(x)≥1/h}
dHN−1

u+(x)
∫

u−(x)

|bε(x, t)−b∗(x, t)| dt. (3.7)

Notice that for all ε > 0 and h ∈ IN

∫

Ju∩{x∈�′:u+(x)−u−(x)<1/h}
dHN−1

u+(x)
∫

u−(x)

|bε(x, t)−b∗(x, t)| dt

≤ 2‖b‖L∞(�′×(−M,M))

∫

Ju∩{x∈�′:u+(x)−u−(x)<1/h}
|u+(x)− u−(x)| dHN−1. (3.8)

On the other hand,

∫

Ju∩{x∈�′:u+(x)−u−(x)≥1/h}
dHN−1

u+(x)
∫

u−(x)

|bε(x, t)−b∗(x, t)| dt

=
M
∫

−M

dt
∫

Ju∩{x∈�′:u+(x)−u−(x)≥1/h}
χ[u−(x),u+(x)](t)|bε(x, t)−b∗(x, t)| dHN−1
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and this last integral is infinitesimal as ε → 0, since for L1-a.e. t ∈ IR we have
that bε(x, t) → b∗(x, t) for HN−1-a.e. x ∈ �, b∗ and bε are bounded and, for any h,
Ju ∩ {x ∈ � : u+(x) − u−(x) ≥ 1/h} is a set of finite HN−1 measure. Therefore, from
(3.8) and (3.7), letting first ε tend to zero and then h tend to ∞, we immediately obtain
(3.4).

Step 3 Notice that since b(·, t) ∈ BV(�) for L1-a.e. t we have that for every x ∈ �′

∇xbε(x, t) =
∫

�

�ε(x − y)dDyb(y, t).

Thus, we have by Fubini’s theorem,

∫

�

φ(x)dx

u(x)
∫

0

∇xbε(x, t)dt =
M
∫

−M

dt
∫

�u,t

sgn(t)φ(x)∇xbε(x, t)dx

=
M
∫

−M

dt
∫

�u,t

sgn(t)φ(x)dx
∫

�

�ε(x − y)dDyb(y, t)

=
M
∫

−M

sgn(t)dt
∫

�

dDyb(y, t)
∫

�

�ε(x − y)φ(x)χ�u,t (x)dx

=
M
∫

−M

sgn(t)dt
∫

�

�ε ∗ (φχ�u,t )(y)dDyb(y, t). (3.9)

For L1-a.e. t the function χ�u,t , being the characteristic function of a set of finite perim-
eter, is in BV(�). Therefore for HN−1-a.e. x ∈ � (hence, for |Dxb(·, t)|-a.e. x ∈ �) we
have that

lim
ε→0+ �ε ∗ (φχ�u,t )(x) = φ(x)χ∗

�u,t
(x)

and thus

lim
ε→0+

∫

�

�ε ∗ (φχ�u,t )(x)dDxb(x, t) =
∫

�

φ(x)χ∗
�u,t
(x)dDxb(x, t).

From this equation, using the assumption (ii) and the Lebesgue’s dominated conver-
gence theorem, we can pass to the limit in (3.9), thus getting that

lim
ε→0+

∫

�

φ(x)dx

u(x)
∫

0

∇xbε(x, t)dt =
M
∫

−M

dt
∫

�

sgn(t)φ(x)χ∗
�u,t
(x)dDxb(x, t).

Then, the assertion follows at once from the last equality, (3.2), (3.3), (3.4) and from
equation (3.1). ��
Remark 3.3 Let f : IR → IR be a Lipschitz function, such that f (0) = 0. Setting
b(t) = f ′(t) and v(x) = f (u(x)), from (1.2) we get that

Dv = f ′(̃u(x))∇uLN + f ′(̃u(x))Dcu + (

f (u+(x))− f (u−(x))
)

νuHN−1 Ju ,
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which agrees with the ‘classical’ chain rule formula for BV functions (see [2, Theo-
rem 3.96]). Assume now that b(x, t) ≡ b(x) is a bounded BV(�) function and that
u ∈ BV(�) ∩ L∞(�) and use (1.2) to deduce a formula for the derivative of bu. To
this aim, notice that Lemma 2.2 yields that, for L1-a.e. t > 0,χ∗

�u,t
(x) = 1 if u−(x) > t,

χ∗
�u,t
(x) = 1/2 if u−(x) ≤ t ≤ u+(x) and χ∗

�u,t
(x) = 0 if t > u+(x), and similar formulas

hold if t < 0, therefore

+∞
∫

−∞
sgn(t)χ∗

�u,t
(x)dt = u+(x)+ u−(x)

2
and

u+(x)
∫

u−(x)

b∗(x)dt = b∗(x)(u+(x)− u−(x)).

From these equalities and from (1.2), we then get easily that the diffuse part ˜D(bu) of
the distributional derivative of bu is given by

˜D(bu) = ũ(x)˜Db +˜b(x)˜Du ,

while the representation formula for the jump part of D(bu) splits in three parts:

Dj(bu) = ũ(x)Djb (Jb \ Ju)+˜b(x)Dju (Ju \ Jb)+ Dj(bu) (Jb ∩ Ju) ,

where

Dj(bu) (Jb ∩ Ju) =

⎧

⎪

⎨

⎪

⎩

(

b+(x)u+(x)− b−(x)u−(x)
)

νb(x)HN−1 if νb(x) = νu(x),

(

b+(x)u−(x)− b−(x)u+(x)
)

νb(x)HN−1 if νb(x) = −νu(x),

(see [2, Example 3.97]). Therefore, we may conclude that

D(bu) = u∗Db + b∗Du.

By a slight modification of the proof of Theorem 1.1 we can deduce the following
chain rule for Sobolev functions. To this aim, let us introduce the space

M1(div;�) = {v ∈ L1(�; IRN) : divv is a Radon measure in �} .

Theorem 3.4 Let� ⊂ IRN be a bounded open set and let b : �×IR → IRN be a locally
bounded Borel function. Assume that

(i) for LN-a.e. x ∈ � the function b(x, ·) is continuous in IR;
(ii) for L1-a.e. t ∈ IR the function b(·, t) ∈ M1(div;�);

(iii) for any compact set H ⊂ IR,
∫

H

|divxb(·, t)|(�)dt < +∞.

Then, for every u ∈ W1,1(�) ∩ L∞(�), the function v : � → IRN, defined by

v(x) :=
u(x)
∫

0

b(x, t)dt,



440 V. De Cicco et al.

belongs to M1(div;�) and for any φ ∈ C1
0(�) we have

∫

�

〈∇φ(x), v(x)〉dx = −
+∞
∫

−∞
dt
∫

�

sgn(t)χ∗
�u,t
φ(x)d divxb(x, t)

−
∫

�

φ(x)〈b(x, u(x)), ∇u(x)〉dx.

Proof Let us fix a function u ∈ W1,1(�) ∩ L∞(�) and a test function φ ∈ C1
0(�) and

define bε and vε as in the proof of Theorem 1.1. Since bε is locally Lipschitz in�× IR,
we have that vε ∈ W1,1(�; IRN) and

∫

�

〈∇φ(x), vε(x)〉dx = −
∫

�

φ(x)dx

u(x)
∫

0

divxbε(x, t)dt

−
∫

�

φ(x)〈bε(x, u(x)), ∇u(x)〉dx. (3.10)

The convergence of the integral on the left hand side is proved exactly as in the proof
of Theorem 1.1. Moreover, the convergence of the last integral on the right hand side
follows immediately by observing that for LN-a.e. x ∈ �

lim
ε→0+ bε(x, t) = b(x, t) for all t ∈ IR.

In fact, this equality follows from the assumption (i), using Scorza–Dragoni’s lemma
with the same simple argument used below to prove (3.12).

Since

divxbε(x, t) =
∫

�

�ε(x − y)d divyb(y, t) ,

arguing as in (3.9), we get that

∫

�

φ(x)dx

u(x)
∫

0

divx bε(x, t)dt =
M
∫

−M

sgn(t)dt
∫

�

�ε ∗ (φχ�u,t )(y)d divyb(y, t), (3.11)

where M is a positive number such that ‖u‖∞ < M. Since, for L1-a.e. t ∈ IR, divxb(·, t)
is a Radon measure, from Proposition 3.1 of [3] we get that, for every Borel subset
A of � with HN−1(A) = 0, the total variation |divxb(·, t)|(A) is zero. On the other
hand, for L1-a.e. t ∈ IR, the function χ�u,t is the characteristic function of a set of
finite perimeter and thus is in BV(�). Therefore, for HN−1-a.e. x ∈ �, (hence, for
|divxb(·, t)|-a.e. x ∈ �) we have that

lim
ε→0+ �ε ∗ (φχ�u,t )(x) = φ(x)χ∗

�u,t
(x)

and thus

lim
ε→0+

∫

�

�ε ∗ (φχ�u,t )(x)d divxb(x, t) =
∫

�

φ(x)χ∗
�u,t
(x)d divxb(x, t) .
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Therefore using the assumption (iii) and the Lebesgue’s dominated convergence the-
orem, we can pass to the limit in (3.11), and we obtain

lim
ε→0+

∫

�

φ(x)dx

u(x)
∫

0

divxbε(x, t)dt =
M
∫

−M

dt
∫

�

sgn(t)φ(x)χ∗
�u,t
(x)d divxb(x, t).

Then, the assertion follows from this equality and from (3.10). ��

Proof of Theorem 1.2. Step 1. Let (un) be a sequence in W1,1(�) converging in L1(�)

to u ∈ W1,1(�). We may assume, without loss of generality, that un(x) → u(x) for LN-
a.e. x ∈ �. Let us introduce the Borel set G = {x ∈ � : ũn(x) → ũ(x)} and fix an open
set �′ ⊂⊂ � and a function η ∈ C1

0(IR), with 0 ≤ η(t) ≤ 1.
Denoting by gk the sequence of functions provided by Lemma 2.4, we fix k. Notice

that, from the assumptions (1.4) and (1.5) on f , from Remark 2.5 and from the
Scorza–Dragoni lemma, it follows that for any ε > 0 there exists a compact set Kε

such that LN(�′ \ Kε) < ε and a
k
∣

∣Kε×IR
is continuous, where ak(x, t) = (a1,k(x, t), . . . ,

aN,k(x, t)). Let us now introduce the set Dε = {x ∈ Kε : D(Kε ; x) = 1} and observe
that for all t ∈ IR every point x ∈ Dε is a point of approximate continuity for ak(·, t).
In fact if x ∈ Dε we have

−
∫

B�(x)

|ak(y, t)− ak(x, t)|dy ≤ 1
ωN�N

∫

B�(x)∩Kε

|ak(y, t)− ak(x, t)|dy

+ 2 sup
y∈�′

|ak(y, t)|L
N
(

B�(x) \ Kε

)

ωN�N

and the right hand side is infinitesimal as ε → 0, since ak(·, t) is continuous on Kε and
Kε has density 1 at x. Therefore, we may conclude that

Jak(·,t) ∩ Dε = ∅ for all t ∈ IR. (3.12)

Recalling assumption (1.7), we get immediately that the set function, defined for any
Borel subset E of �′ by setting

μ(E) =
∫

suppη

|Dxak(x, t)|(E)dt,

is a finite Radon measure in�′. Therefore, for any m ∈ IN, we can construct a function
ψm ∈ C1

0(�
′), such that 0 ≤ ψm(x) ≤ 1 for all x ∈ �′ and such that, denoting by Hm

the compact set Hm = {x ∈ �′ : ψm(x) = 1}, the following relations hold

Hm ⊂ G∩Dε ⊂ {ψm > 0}, LN({ψm > 0}\Hm
)+μ({ψm > 0}\Hm

)

<
1
m

. (3.13)

Finally, let us fix a finite family {Aj}j∈J of pairwise disjoint open sets with their closures
contained in �′, denote, for any j ∈ J, by (ϕj,r)r∈IN a sequence in C1

0(Aj), with 0 ≤
ϕj,r ≤ 1, and set ηj,r(x, t) = ϕj,r(x)η(t). Since f (x, t, ξ) ≥ ∑

j∈J gk(x, t, ξ)ηj,r(x, t)ψm(x),
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we have

lim inf
n→∞ F(un,�) ≥

∑

j∈J

lim inf
n→∞

∫

�′
a0,k(x, un(x))ηj,r(x, un(x))ψm(x)dx

+
∑

j∈J

lim inf
n→∞

∫

�′
〈ak(x, un(x))ηj,r(x, un(x)), ∇un〉ψm(x)dx. (3.14)

Since by Remark 2.5 the functions a0,k(x, t) are continuous with respect to t, we have,
for all j ∈ J, r, m ∈ IN,

∑

j∈J

lim
n→∞

∫

�′
a0,k(x, un)ηj,r(x, un)ψm(x)dx =

∑

j∈J

∫

�′
a0,k(x, u)ηj,r(x, u)ψm(x)dx. (3.15)

Notice also that ak(x, t)ηj,r(x, t) satisfy the assumptions of Theorem 1.1, for all j, r and
thus

lim
n→∞

∫

�′
〈ak(x, un)ηj,r(x, un), ∇un〉ψm dx

= lim
n→∞ −

{∫

�′
dx

un(x)
∫

0

〈ak(x, t)ηj,r(x, t), ∇ψm〉dt

+
+∞
∫

−∞
dt

∫

Hm

sgn(t)χ∗
�un ,t

(x)ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

+
+∞
∫

−∞
dt

∫

�′\Hm

sgn(t)χ∗
�un ,t

(x)ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

}

. (3.16)

By the LN-a.e. convergence of un(x) → u(x) we have that

lim
n→∞

∫

�′
dx

un(x)
∫

0

〈ak(x, t)ηj,r(x, t), ∇ψm(x)〉dt =
∫

�′
dx

u(x)
∫

0

〈ak(x, t)ηj,r(x, t), ∇ψm(x)〉dt. (3.17)

Step 2. The last two integrals in (3.16), where the measures Diai,k(·, t) appear, require
a more careful analysis. To estimate the third integral on the right hand side of (3.16),
we observe that

∣

∣

∣

∣

+∞
∫

−∞
dt

∫

�′\Hm

sgn(t)
[

χ∗
�un ,t

(x)− χ∗
�u, t

(x)
]

ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

∣

∣

∣

∣

≤ c(N)
∫

suppη

|Dxak(·, t)|({ψm > 0} \ Hm)dt

+ c(N)‖〈ak, ∇ηj,r〉‖L∞(�′×suppη)L1(suppη)LN({ψm > 0} \ Hm),
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where c(N) is a constant depending only on the dimension. Therefore, from this
inequality and from (3.13) we get that

lim inf
n→∞ −

+∞
∫

−∞
dt

∫

�′\Hm

sgn(t)χ∗
�un ,t

(x)ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

≥ −
+∞
∫

−∞
dt

∫

�′\Hm

sgn(t)χ∗
�u,t
(x)ψm(x)d

(

divx(ak(x, t)ηj,r(x, t))
)

− c(N, ak, ηj,r)
1
m

, (3.18)

for some positive constant c(N, ak, ηj,r), depending only on N, ak and ηj,r.
Let us now show that for L1-a.e. t ∈ IR

lim
n→∞

∫

Hm

sgn(t)χ∗
�un ,t

(x)ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

=
∫

Hm

sgn(t)χ∗
�u,t
(x)ψm(x)d

(

divx(ak(x, t)ηj,r(x, t))
)

. (3.19)

To this aim, recalling that for L1-a.e. t ∈ IR the level set {u > t} is a set of finite
perimeter, we are going to prove that for L1-a.e. t ∈ IR, there exists a set Gt ⊂ G ∩ Dε

such that

χ∗
�un ,t

(x) → χ∗
�u,t
(x) for all x ∈ Gt, LN(G∩Dε \ Gt)+|Dxak(·, t)|(G∩Dε \ Gt) = 0

(3.20)
To prove (3.20) let us fix t ∈ IR such that {u > t} is a set of finite perimeter, (2.10)
holds and (2.12), (2.13) hold for all x ∈ � \ Nt, where HN−1(Nt) = 0. Let us set

Gt = G ∩ Dε \
(

Nt ∪ {u− ≤ t ≤ u+}
)

.

Let us fix x ∈ Gt. Since x ∈ G, we have in particular that x is a point of approximate
continuity for u and for all functions un. Moreover, since x �∈ {u− ≤ t ≤ u+} and
x �∈ Nt, by (2.12) and (2.13), we have that either ũ(x) > t or ũ(x) < t. In the first case,
since x ∈ G, we have that ũn(x) > t, for n large enough, hence by (2.11) χ∗

�un ,t
(x) = 1

and thus χ∗
�un ,t

(x) → χ∗
�u,t
(x). The same conclusion holds also when ũ(x) < t. This

proves the pointwise convergence of χ∗
�un ,t

to χ∗
�u,t

in the set Gt.
To prove the equality on the right hand side of (3.20), notice that, by definition

G ∩ Dε \ Gt = G ∩ Dε ∩
(

Nt ∪ {̃u = t}
)

.

From (2.10), HN−1({u− ≤ t ≤ u+} \ ∂M{u > t}) = 0 and since HN−1(∂M{u > t}) <
∞, we get that G ∩ Dε \ Gt is a set of finite HN−1 measure. Therefore, we obtain
immediately that it has zero LN measure. Moreover, from (3.12) we have also that
|Djak(·, t)|(G ∩ Dε \ Gt

) = 0. On the other hand, since the Cantor part of the deriv-
ative of a BV function is zero on a set of HN−1 finite measure, we have also that
|Dcak(·, t)|(G ∩ Dε \ Gt

) = 0, hence |Dak(·, t)|(G ∩ Dε \ Gt
) = 0.
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Since Hm ⊂ G ∩ Dε , (3.19) follows at once from (3.20) and since LN(Hm)+μ(Hm)

is finite, from (3.19) we may conclude that

lim
n→∞

+∞
∫

−∞
dt

∫

Hm

sgn(t)χ∗
�un ,t

(x)ψm(x)d
(

divx(ak(x, t)ηj,r(x, t))
)

=
+∞
∫

−∞
dt

∫

Hm

sgn(t)χ∗
�u,t
(x)ψm(x)d

(

divx(ak(x, t)ηj,r(x, t))
)

. (3.21)

Step 3. Putting together (3.14), (3.15), (3.16), (3.17), (3.18) and (3.21), and using
Theorem 1.1 again, we obtain that for all k, r, m ∈ IN

lim inf
n→∞ F(un,�) ≥

∑

j∈J

⎧

⎨

⎩

∫

�′
a0,k(x, u(x))ηj,r(x, u(x))ψmdx

−
∫

�′
dx

u(x)
∫

0

〈ak(x, t)ηj,r(x, t), ∇ψm〉dt

−
+∞
∫

−∞
dt

∫

�′
sgn(t)χ∗

�u,t
(x)ψm(x)d

(

divx(ak(x, t)ηj,r(x, t))
)

−c(N, ak, ηj,r)
1
m

⎫

⎬

⎭

=
∑

j∈J

⎧

⎨

⎩

∫

�′
a0,k(x, u)ηj,r(x, u)ψmdx

+
∫

�′
〈ak(x, u)ηj,r(x, u), ∇u〉ψmdx − c(N, ak, ηj,r)

1
m

⎫

⎬

⎭

.

Thus, letting m tend to ∞, and recalling that LN(� \ G) = 0 and LN(Kε \ Dε) = 0 we
have

lim inf
n→∞ F(un,�) ≥

∑

j∈J

∫

Kε

[

a0,k(x, u)ηj,r(x, u)+ 〈ak(x, u)ηj,r(x, u), ∇u〉] dx,

hence, letting also ε go to zero, we finally get

lim inf
n→∞ F(un,�) ≥

∑

j∈J

∫

�′

[

a0,k(x, u)ηj,r(x, u)+ 〈ak(x, u)ηj,r(x, u), ∇u〉] dx.

Recall that in Step 1 we defined ηj,r(x, t) = ϕj,r(x)η(t). For all j ∈ J, let us now choose
a sequence ϕj,r(x) pointwise converging to the characteristic function of the set A+

j ,
where

A+
j := {x ∈ Aj : a0,k(x, u(x))+ 〈ak(x, u(x)), ∇u(x)〉 = gk(x, u(x), ∇u(x)) ≥ 0}.
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Thus,

lim inf
n→∞ F(un,�) ≥

∑

j∈J

∫

Aj

η(u(x))max{gk(x, u(x), ∇u(x)), 0}dx

and, by applying Lemma 2.3, we obtain

lim inf
n→∞ F(un,�) ≥

∫

�′
f (x, u, ∇u)η(u)dx.

Hence, the result follows letting first η(t) ↑ 1 for any t ∈ IR and then letting �′ ↑ �.
��

We conclude this section by a simple extension of Theorem 1.2 to a functional
depending only on the absolutely continuous part of a BV function.

Theorem 3.5. Let f satisfy the same assumption as in Theorem 1.2. If (un) is a sequence
in W1,1(�) converging in L1(�) to u ∈ BV(�), then

lim inf
n→∞

∫

�

f (x, un(x), ∇un(x))dx ≥
∫

�

f (x, u(x), ∇u(x)),

where ∇u is the absolutely continuous part of Du.

Proof. Let (un) be a sequence in W1,1(�) converging in L1(�) to u ∈ BV(�). Assume,
without loss of generality, that un(x) → u(x) for LN-a.e. x ∈ � and set G = {x ∈ Cu :
ũn(x) → ũ(x)}.

Let us fix an open set�′ ⊂⊂ � and argue exactly as in Steps 1 and 2 of the proof of
Theorem 1.2 (where the assumption that u was a Sobolev function was never used).
Therefore, as before, we get that

lim inf
n→∞ F(un,�) ≥

∑

j∈J

⎧

⎨

⎩

∫

�′
a0,k(x, u(x))ηj,r(x, u(x))ψmdx

−
∫

�′
dx

u(x)
∫

0

〈ak(x, t)ηj,r(x, t), ∇ψm〉dt

−
+∞
∫

−∞
dt
∫

�′
sgn(t)χ∗

�u,t
(x)ψm(x)d

(

divx(ak(x, t)ηj,r(x, t))
)

−c(N, ak, ηj,r)
1
m

⎫

⎬

⎭

,

where all the quantities appering in this inequality are defined as in the proof of
Theorem 1.2. Let us now apply to the right hand side of this inequality the chain rule
formula (1.2), thus getting (recall that now u is a BV function)
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lim inf
n→∞ F(un,�) ≥

∑

j∈J

{∫

�′
a0,k(x, u(x))ηj,r(x, u(x))ψmdx

+
∫

�′
〈ak(x, u(x))ηj,r(x, u(x)),∇u(x)〉ψmdx

+
∫

�′
〈a∗

k(x, ũ(x))ηj,r(x, ũ(x)),
Dcu
|Dcu| 〉ψmd|Dcu|

+
∫

Ju

ψmdHN−1

u+(x)
∫

u−(x)

〈a∗
k(x, t)ηj,r(x, t), νu(x)〉dt

}

.

For all j ∈ J, let us choose the sequence (ϕj,r) so that ϕj,r(x) → χD+
j
(x) for |Du|-a.e. x ∈

�, where D+
j = {x ∈ Aj∩Du : a0,k(x, u(x))+〈ak(x, u(x)), ∇u(x)〉 = gk(x, u(x), ∇u(x)) ≥

0}. Thus, we have

lim inf
n→∞ F(un,�) ≥

∑

j∈J

∫

Aj∩Du

η(u(x))max {gk(x, u(x), ∇u(x)), 0}ψm(x)dx.

From this inequality, letting m → ∞ and recalling (3.13), we obtain that

lim inf
n→∞ F(un,�) ≥

∑

j∈J

∫

Aj

η(u(x))max {gk(x, u(x), ∇u(x)), 0} dx

and from this inequality the result follows as in the proof of Theorem 1.2. ��
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